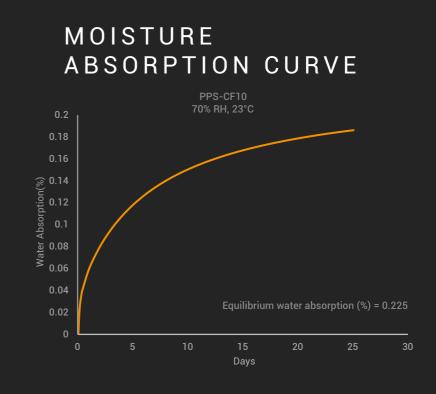
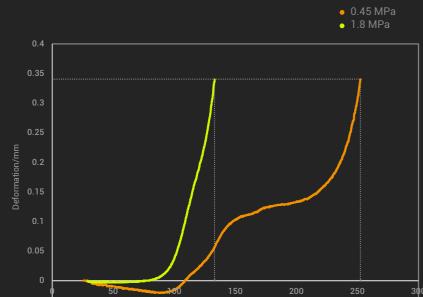
V1.1


FIBERON™ PPS-CF10

Fiberon™ PPS-CF10 is a carbon fiber reinforced PPS (Polyphenylene sulfide) filament, with minimal warping during printing and no need for a heated chamber. With exceptional mechanical strength, high heat resistance, chemical resistance, V0 flame retardancy, and moisture insensitivity, it's specifically designed for professionals operating in extreme conditions.


WWW.FIBERON3D.COM

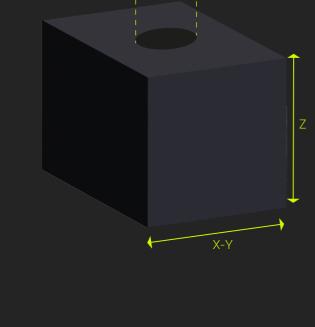
PHYSICAL PROPERTIES

PROPERTY	TESTING METHOD	TYPICAL VALUE
Density	ISO1183, GB/T1033	1.29 g/cm³at 23°C
Melt index	300°C, 2.16 kg	26.2 g/10min
Flame retardancy	UL 94, 1.5mm	VO
Surface Resistivity (Ω)	ANSI ESD S11.11	OL, >10 ¹² Ω

HDT CURVE

Temperature/°C

THERMAL PROPERTIES


	PROPERTY	TESTING METHOD	TYPICAL VALUE	
	Glass transition temp.	DSC, 10°C/min	97.7 °C	
	Melting temperature	DSC, 10°C/min	279.7 °C	
	Crystallization temp.	DSC, 10°C/min	218.8 °C	
	Decomposition temp.	TGA, 20°C/min	502.7 °C	
	Vicat softening temp.	ISO 306, GB/T 1633	267.5 °C	
)	Heat deflection temp.	ISO 75 1.8MPa	133.0 °C	
	Heat deflection temp.	ISO 75 0.45MPa	252.5 °C	

MECHANICAL PROPERTIES

PROPERTY	TESTING METHOD	TYPICAL VALUE
Young's modulus (X-Y) Young's modulus (Z)	ISO 527, GB/T 1040	5446.7 ± 149.0 MPa 2790.0 ± 152.6 MPa
Tensile strength (X-Y) Tensile strength (Z)	ISO 527, GB/T 1040	59.4 ± 1.3 MPa 32.0 ± 5.1 MPa
Elongation at break (X-Y) Elongation at break (Z)	ISO 527, GB/T 1040	1.4 ± 0.1% 1.6 ± 0.2%
Bending modulus (X-Y) Bending modulus (Z)	ISO 178, GB/T 9341	4646.9 ± 136.9 MPa 2619.3 ± 155.3 MPa
Bending strength (X-Y) Bending strength (Z)	ISO 178, GB/T 9341	94.3 ± 1.9 MPa 30.0 ± 5.2 MPa
Charpy impact strength (X-Y) notched Charpy impact strength (X-Y)un-notched Charpy impact strength (Z) un-notched	ISO 179, GB/T 1043	5.3 ± 0.2 kJ/m ² 11.4 ± 0.7 kJ/m ² 4.1 ± 1.3 kJ/m ²

^{*}All specimens were annealed at 125°C for 16h.

SHRINKAGE TESTING

	SIZE	PRINTING	ANNEALING
X-Y	40mm	39.95mm	39.96mm
Z	40mm	39.94mm	39.90mm
Diameter	10mm	9.79mm	9.79mm
*Model infill 30%			

Up to 300mm/s

310-350 °C Nozzle temperature Printing speed

RECOMMENDED PRINTING CONDITIONS

Build plate temperature	80-90 °C
Chamber temperature	Room temp.
Cooling fan	OFF

	100 6/1011
Annealing temp. and time	125 °C/16H

support material

Recommended

NOTE

Abrasion of the brass nozzle happens frequently when printing Fiberon™ PPS-CF10. A wear-resistance nozzle,

Fiberon™ PPS-CF10 should always be stored and used under dry conditions (relative humidity below 20%).

such as hardened steel and ruby nozzle, is highly recommended to be used with Fiberon™ PPS-CF10

Infill

Shell

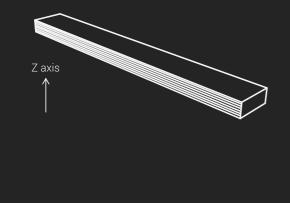
Cooling fan

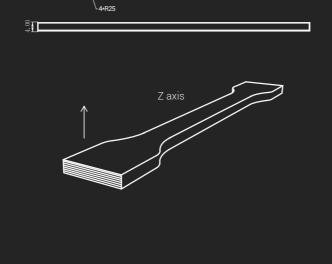
Printing temperature 330-350°C 90 °C Bed temperature

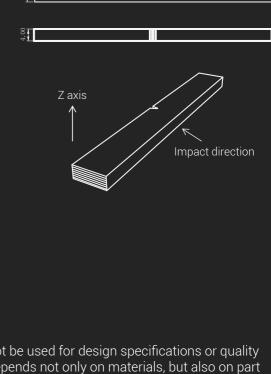
3

HOW TO MAKE SPECIMENS

EXURAL TESTING SPECIMEN M D638 (ISO 527, GB/T 1040)	
80.00	
60.00	

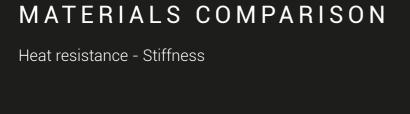

	ILE TESTING SPI		
AS	STM D638 (ISO 527, GB/T	1040)	
	150.00		
	114.00		


100%


2

OFF

Top & bottom layer


IMPACT TESTING SPECIMEN

80.00

ASTM D638 (ISO 179, GB/T 1043)

DISCLAIMER

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. End- use performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice. Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/ recycling practices of Polymaker materials for the intended application. Polymaker makes no warranty of any kind, unless announced separately, to the fitness for any use or application. Polymaker shall not be made liable for any damage, injury or loss induced from the use of Polymaker materials in any application.

今 FIBERON

insensitive to moisture dry state
wet state